Highway Networks for Visual Question Answering

Aaditya Prakash PhD advisor: James Storer Brandeis University

Architecture

Perceptron

$$y = H(x, W) + \mathbf{b}$$

Highway Networks

 $y = H(x, W_H) \cdot T(x, W_T) + x \cdot C(x, W_C) + \mathbf{b}$ $T(x) = \sigma(W_T x + \mathbf{b}_T)$ C(x) = 1 - T(x)

Highway Networks

- Allows training very deep networks
 - Srivastava et al trained 50+ layers [1]
- Overcomes vanishing/exploding gradient issues by learning gating mechanism, like LSTM
- Includes 'Transform' gate (T) and 'Carry' gate (C)
 - Simple Perceptron

 $y = H(x, W) + \mathbf{b}$

• Highway Layer (MLP)

 $y = H(x, W_H) \cdot T(x, W_T) + x \cdot C(x, W_C) + \mathbf{b}$ $T(x) = \sigma(W_T x + \mathbf{b}_T)$ C(x) = 1 - T(x)

Multimodal Learning VQA

Multimodal Learning VQA

Multimodal Learning VQA

Note:

1

Figure does not mention the use following techniques :-

- Dropout and Batch-Normalization
- Image feature normalization
- Image augmentation before feature extraction
- Use of other word vectors like Word2Vec and ConceptNet

Results & Performance

Results from VQA Challenge

Real Open-Ended Test Standard 2015* (%)

Yes/No	Number	Other	Overall		
82.11	37.73	51.91	62.88		
Real Multiple choice Test Standard 2015 (%)					
Yes/No	Number	Other	Overall		
81.95	38.56	56.4	65.07		
 Five model ens Model 1 - Model 2 - Model 3 - Model 4 - Model 5 - 10 Crop image 5 SF - Statistical within that quest test 2015 [3] 	emble VGGNet + 98% SF + Glove VGGNet + 95% SF + Word ResNet + 98% SF + Glove ResNet + 98% SF + Conc ResNet + 95% SF + Word inference ensembled int Filtering : restrict the ar estion type n2014 + val2014 + finetur	e (SF = d2Vec e eptNet Numberbatch 2Vec to one answer nswer to some percentage ned on results from earlie	= Statistical Filtering) e of answers er model from		

• No SF for Real Multiple Choice (this might have been a bad idea)

Comparison of Accuracy over depth

VGGNet (4096 features)*

ResNet (2048 features)*

# Layers	Parameters (millions)	Accuracy (val)	
1	46.052	22.83	
3	113.177	44.7	
5	180.302	47.4	
10	348.115	55.7	

Accuracy Parameters # Layers (millions) (val) % 1 **14.638** 22.1 45.85 3 31.423 48.208 49.21 5 90.172 57.1 10

* Trained on train2014 and tested <u>on val2014</u>

* Single model (no ensembling), No Statistical filtering

Comparison of accuracy & parameters over depth

- * Trained on train2014 and tested on val2014
- * Single model (no ensembling), No Statistical filtering
- * Real Open-Ended only

Hyper Parameter Search

Parameters

- Learning Rate
- Number of output (softmax)
- Initialization
 - o Uniform
 - o Xavier
 - Kaiming
 - \circ heuristic
- Activation (tanh/relu/prelu)
- Num highway layers (1,2,3,4,6,10)
- Bias (Carry & Transfer)
- Decay factor
- Epoch at which to change optimizer

*Trained on train2014 and tested on val2014, ResNet *Single model (no ensembling), No Statistical filtering (SF) * Real OpenEnded only

References

[1] Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber. "Highway networks." arXiv preprint arXiv:1505.00387 (2015).

[2] Antol, Stanislaw, et al. "Vqa: Visual question answering." Proceedings of the IEEE International Conference on Computer Vision. 2015.

[3] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).

ANY QUESTIONS?

Thanks!

My thanks to -

- VQA Team for the challenge
- Aishwarya Agrawal for blazing fast replies to all my queries
- James Storer, my PhD advisor.
- NVIDIA for gifting us a Titan X.
- Following people from whose code I learned -
 - Yoon Kim @yoonkim (HarvardNLP)
 - Jin-Hwa Kim @jnhwkim (Element-Research)
 - Jainsen Lu @jiasenlu (VQA_LSTM_CNN)
 - François Chollet @fchollet (Keras)
 - Hyeonwoo Noh @HyeonwooNoh (DPPNet)
 - Bolei Zhou @metalbubble (VQAbaseline)
 - Matthew Honnibal (Spacy)